Sleep, Circadian Rhythms, and Interval Timing: Evolutionary Strategies to Time Information
نویسنده
چکیده
A crucial property of the brain is to integrate temporal information with accurate physiological responses (Hinton and Meck, 1997; Buhusi and Meck, 2005; Coull et al., 2011). Evolution has favored biological clocks that dictate homeostatic processes (e.g., the circadian timing of sleep) and, on a smaller time-scale, timed behavioral responses (e.g., interval timing). The interplay between such time-keeping mechanisms is intriguing but biologically complex. Moreover, in biology, analogous problems can be successfully solved by multiple computations. In this article I will discuss of sleep, circadian rhythms, and interval timing by delineating several aspects that suggest a common evolutionary role in providing neurobiological mechanisms for temporal information processing. Neither interval timing nor the homeostatic regulation of sleep are currently as well-understood, at the molecular level, as the circadian clock. This has triggered a scientific interest in linking these phenomena to the circadian molecular machinery. On one hand, sleep homeostasis has been investigated in genetic and lesion studies of the circadian “master” clock (Franken and Dijk, 2009) to test whether the two processes (homeostatic and circadian) were independent. On the other hand, it has been questioned whether interval timing and circadian clock share similar oscillatory mechanisms, although with a different time-scale (Crystal, 2001, 2006a,b; Crystal and Baramidze, 2007), and whether circadian rhythms affect interval timing. Whilst the research in sleep and circadian clock over the last few years resulted in some interesting positive associations (reviewed in Tucci and Nolan, 2010), the question whether interval timing is related to the circadian clock has not a clear unanimous conclusion yet.
منابع مشابه
Jet lag syndrome: circadian organization, pathophysiology, and management strategies
The circadian system regulates the cyclical occurrence of wakefulness and sleep through a series of oscillatory networks that comprise two different theoretical processes. The suprachiasmatic nucleus (SCN) of the hypothalamus contains the master oscillatory network necessary for coordinating these daily rhythms, and in addition to its ability to robustly generate rhythms, it can also synchroniz...
متن کاملCircadian rhythms and sleep in children with autism.
A growing body of research has identified significant sleep problems in children with autism. Disturbed sleep-wake patterns and abnormal hormone profiles in children with autism suggest an underlying impairment of the circadian timing system. Reviewing normal and dysfunctional relationships between sleep and circadian rhythms will enable comparisons to sleep problems in children with autism, pr...
متن کاملEffect of an Antagonist of Vasoactive Intestinal Polypeptide on Biological Rhythm of Rest Activity in the Rat
Abstract Vasoactive Intestinal Polypeptide (VIP), has been found in different neurotransmitter systems and exists in various nerve tracts in the brain. Potential role of this peptide in physiological processes such as regulation of sleep and wakefulness, and biological rhythms has been confirmed in several reports. In the present research effects of intracerebroventricular (ICV) injection of a...
متن کاملPeak of circadian melatonin rhythm occurs later within the sleep of older subjects.
We investigated the relationship between sleep timing and the timing of the circadian rhythm of plasma melatonin secretion in a group of healthy young and older subjects without sleep complaints. The timing of sleep and the phase of the circadian melatonin rhythm were earlier in the older subjects. The relationship between the plasma melatonin rhythm and the timing of sleep was such that the ol...
متن کاملMeal Timing Regulates the Human Circadian System
Circadian rhythms, metabolism, and nutrition are intimately linked [1, 2], although effects of meal timing on the human circadian system are poorly understood. We investigated the effect of a 5-hr delay in meals on markers of the human master clock and multiple peripheral circadian rhythms. Ten healthy young men undertook a 13-day laboratory protocol. Three meals (breakfast, lunch, dinner) were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011